Mycal Tucker

EDUCATION

M.I.T.

PhD Aug 2018 - Present Aero/Astro Cum. GPA: 5.0/5.0

M.I.T.

MEng. Sep 2016 CS in Al Cum. GPA: 5.0/5.0

M.I.T.

BS June 2015 Double Major: Computer Science Aero/Astro Engineering Cum. GPA: 4.9/5.0

SKILLS

Languages: Java, Python Tools: Git, Vim Independently Learned: C++, R, Matlab/Simulink

COURSEWORK

Computational Psycholinguistics Design and Analysis of Algorithms Underactuated Robotics Cognitive Robotics

AWARDS

Winner of Morsa prize for best application of comp. sci. to aero/astro engineering Member of Tau Beta Pi Member of Eta Kappa Nu

WORK AND RESEARCH EXPERIENCE

Massachusetts Institute of Technology

Aug 2018 - Present Cambridge, MA

mycal.tucker@gmail.com

github.com/mycal-tuckerlinkedin.com/in/mycaltucker

- PhD Candidate in the Aero/Astro DepartmentResearched interpretable/fair Al tools
 - Teaching Assistant for Real-Time Systems and Software

Amazon Robotics – Software DeveloperAug 2016 – Aug 2018Software Developer on Advanced Robotics teamNorth Reading, MA

- Designed and implemented order allocation algorithms for new Fulfillment Center designs
- Promoted to Software Eng. II within 1.5 years

Massachusetts Institute of TechnologyAug 2015 – Aug 2016Grad. Student Researcher in Robust Robotics GroupCambridge, MA

- Extended natural-language grounding model to autonomously learn new phrases and objects, embodied on mobile robot
- Teaching Assistant for Intro. to AI; ended semester as highest-rated TA in CS department.

PUBLICATIONS

- M. Tucker, Y. Zhou, and J. Shah. Adversarially Guided Self Play for Adopting Social Conventions
- M. Tucker, A. Derya, R. Paul, G. Stein, and N. Roy. Learning Unknown Groundings for Natural Language Interaction with Mobile Robots. In International Symposium on Robotics Research, Chile, 2017.
- M. Tucker (2016). DCG-UPUP-Away: Automatic Symbol Learning through Grounding to Unknowns. (Master's Thesis), MIT, Cambridge, Massachusetts.

ONGOING INTERESTS

Neural Language Models Besides outputting realistic text, what have neural language models learned? Is there evidence for them learning and leveraging linguistic principles?

Interpretable (Emergent) Communication Neural models trained in RL settings learn communication. How do they encode information, and can we make it understandable to humans?

Discovery through NNs Neural networks are great function approximators and can outperform humans at some tasks. Can we make them learn a pattern and then teach it to humans?