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Abstract

Research in automatic natural language grounding, in which robots understand how
phrases relate to real-world objects or actions, offers a compelling reality in which
untrained humans can operate highly sophisticated robots. Current techniques for
training robots to understand natural language, however, assume that there is a fixed
set of phrases or objects that the robot will encounter during deployment. Instead,
the real world is full of confusing jargon and unique objects that are nearly impos-
sible to anticipate and therefore train for. This thesis presents a model called the
Distributed Correspondence Graph - Unknown Phrase, Unknown Percept - Away
(DCG-UPUP-Away) that augments the state of the art Distributed Correspondence
Graph by recognizing unknown phrases and objects as unknown, as well as reasoning
about objects that are not currently perceived. Furthermore, experimental results in
simulation, as well as a trial run on a turtlebot platform, validate the effectiveness of
DCG-UPUP-Away in grounding phrases and learning new phrases.
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Chapter 1

Introduction

Perhaps the defining vision in robotics since its inception as a field has been au-

tonomy — how to make a robotic agent act intelligently and robustly without any

guidance from humans. Although this view of autonomy seems to preclude inter-

action with humans, in fact it requires it. A truly autonomous robot operating in

an environment co-habitated by humans must be able to interact with humans in a

natural way; one would not argue that people who talk to other people are not au-

tonomous, but someone who must be told how to respond to each individual phrase

loses that title. Conversely, ignoring natural language from humans, although techni-

cally autonomous behavior, meets autonomy requirements in the same way a rock is

autonomous. Therefore, natural language interaction is a necessary requirement for

a robot to fulfill the grand promise of autonomous robotics.

Driven by such a vision, considerable work has been done on developing approaches

to the “grounding problem.” The grounding problem is the association of natural lan-

guage to real world actions or objects - i.e. the realization that “chair” refers to the

structure of wood and a cushion in a room full of clutter. Probabilistic graphical

models in particular have yielded impressive results such as training forklifts to drive

to pallets when told “pick up the pallet” [54, 29]. Unfortunately, the models used in

such techniques often make two assumptions:

1) the solution to the grounding problem will be an association between objects

13



and phrases the robot has been trained to recognize;

2) the solution to the grounding problem will refer to objects in the robot’s known

environment (either in a map or in the robot’s field of view).

If a robot is to operate in the real world, these assumptions will likely be vio-

lated. Simply put, it is nearly impossible to teach a robot all correct groundings

before deploying it in the real world. On average, American high school graduates

know 12,000 word families while college-educated Americans typically know upwards

of 17,000 word families, often including domain-specific terms [11]. Even if a robot

were to learn every word in the dictionary, it would also have to recognize every pos-

sible object in the world in order to generate the right groundings. Furthermore, a

context-dependent lexicon often attaches new meaning to words while specific envi-

ronments often contain otherwise rarely-found objects. Compounding theses issues,

robots rarely have complete information about their environment ahead of time and

must therefore be able to reason about objects they cannot currently perceive.

In this work, a probabilistic graphical model is presented in order to reason in

environments in which both assumptions are relaxed. This model is called the Dis-

tributed Correspondence Graph - Unknown Phrase, Unknown Percept - Away (DCG-

UPUP-Away). A previously successful model, the Distributed Correspondence Graph

(DCG), is adapted to operate over broader domains to include nouns that have never

been encountered in training, objects that have never been perceived before, and hy-

pothesized objects that are not currently perceived. After expanding these domains,

the same techniques are used to solve for the most likely grounding as in DCG. The

proposed model is implemented, trained, and tested on a turtlebot navigating a sim-

ulated environment containing a variety of objects.

1.1 Technical Gap

The fundamental problem that DCG-UPUP-Away addresses is the grounding prob-

lem. The correct solution to a grounding problem is the interpretation of natural

language into real-world objects and actions. For example, in a room with a chair

14



and a sofa the correct grounding of “drive to the chair” is the execution of a path to

the chair. Generally, the natural language phrase is not required to be a command

(e.g. “this is a chair”), but in this work only commands will be considered.

First, one must define the domains over which the grounding problem will be

solved. In the general formulation of the grounding problem, three variable domains

must be considered: Γ, which represents what symbolic actions or objects may be

grounded to, Λ, which represents what natural language phrases may be grounded,

and Υ, which represents a model of the world in which phrases may be grounded

by combining symbolic objects with the properties of each actual object. Different

grounding models approximate these three domains in order to leverage simplifying

assumptions, so it is useful to define partitions that may be combined to generate the

full Γ, Λ, and Υ. These partitions are defined in Table 1.1.

Table 1.1: The 4 partitions for Γ allow for grounding to known or unknown actions or
objects. The Λ partitions are divisible into sets of sentences using known or unknown
nouns. Finally, the Υ partitions represent perceived and unperceived objects crossed
with each object’s properties.

symbol domain definition example element
ΓKA {all known symbolic actions} drive_to
ΓKO {all known symbolic objects} cube
ΓUA {all unknown symbolic actions} hop
ΓUO {all unknown symbolic objects} cone
ΛK {all parseable sentences with known nouns} “drive to the cube”
ΛU {all parseable sentences with unknown nouns} “drive to the cone”
P {object properties} object pose in SE(3)
ΥP {{all perceived objects} × P} cube 1 ft. in front of robot facing north

horizontal to ground
ΥU {{all unperceived objects} × P} cube 1 ft. behind robot facing north

horizontal to ground

Given these partitions, one may simultaneously formulate the grounding problem

as a probability maximization problem in Equation 1.1 and set the domains over

which to solve the maximization problem in Table 1.2.

γ∗ = arg max
γεΓ|λ|

P (γ|λ,Υ) (1.1)
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Table 1.2: The full domains for Γ, Λ, and Υ, without making any simplifying assump-
tions, are the unions of all their respective partitions.

Γ = ΓKA ∪ ΓKO ∪ ΓUA ∪ ΓUO
Λ = ΛK ∪ ΛU

Υ = ΥP ∪ΥU

In such a formulation, γ∗ is a vector of individual groundings γεΓ for the vector

of phrases λ composed of individual phrases λεΛ. In other words, the grounding

problem must find the groundings γ∗ that maximizes the probability of being the

right groundings given a particular phrase λ and a model of the world Υ.

While Table 1.2 defines the domains for the general grounding problem, cur-

rent solutions to the grounding problem restrict Λ and Γ to only contain phrases or

groundings that are used in training the grounding model. Furthermore, many (but

admittedly not all) grounding systems restrict Υ to only cover the set of perceived

objects [54, 29, 19]. These standard language grounding models do not have a prin-

cipled way of reasoning about unknown groundings, unknown phrases, or objects not

currently perceived and therefore only use the domains ΓKA ∪ ΓKO, ΛK , and ΥP (for

known groundings, known phrases, and perceived world, respectively), as shown in

Table 1.3.

Table 1.3: Restricted domain definitions often used in current solutions to the ground-
ing problem.

Γ = ΓKA ∪ ΓKO
Λ = ΛK

Υ = ΥP

Unfortunately, such restricted domains preclude a large number of real-world sce-

narios in which phrases or objects are unknown, or phrases refer to objects that are

not currently perceived. When models only use the domains from Table 1.3, unknown

objects are often completely ignored or categorized as a known type of object (e.g.

perceived sofas may be labeled as chairs). Similarly, unknown phrases are either dis-
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carded or grounded to the a priori most likely grounding regardless of language [29].

Thus, there is a clear gap between existing grounding models that only succeed un-

der special conditions and the promise of a general model that correctly determines

what any phrase refers to in any environment. A new language grounding model is

presented in this thesis in order to close this gap.

1.2 Problem Statement

This work presents a new model called DCG-UPUP-Away, based on an existing prob-

abilistic graphical model, DCG, to reason over larger subsets of the full variable do-

mains from Table 1.2. First, phrases may include unknown nouns, as long as the

full sentence remains parseable. Second, groundings may include unknown objects.

Third, the world model includes perceived objects and hypothesized objects that may

exist in the world outside the perceived environment. These expanded domains are

shown in Table 1.4.

Table 1.4: Domain definitions used for DCG-UPUP-Away.

Γ = ΓKA ∪ ΓKO ∪ ΓUO
Λ = ΛK ∪ ΛU

Υ = ΥP ∪ΥU

Formal definitions of what it means for phrases or objects to be known or unknown

will be presented in Chapter 3, but, intuitively, unknowns are things that have not

been seen in training. Similarly, hypothesized objects are more formally presented

in Chapter 4 but may be thought of, for now, as imaginary instances of objects that

may be anywhere in the world.

The problem statement for this work is fully defined by the grounding probability

maximization equation, Equation 1.1, and the domains of the variables in Table 1.4.

While formulating the problem may be simple, generating solutions to the problem

is anything but. For example, whether or not DCG-UPUP-Away has been trained to
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ground the noun “ewer” (a rarely used synonym for pitcher), “ewer” now falls within

the domain of Λ, so DCG-UPUP-Away is expected to correctly ground “ewer” to

pitchers. Furthermore, phrases may refer to objects that DCG-UPUP-Away does not

even know exist yet: in the same example as before, one may command DCG-UPUP-

Away to “pick up the ewer” even if DCG-UPUP-Away does not know what “ewer”

means or what pitchers look like and if there is no pitcher in the room.

Such scenarios may be difficult to solve, but they are vitally important to future

deployment of autonomous robots. Humans often do not have the time or even ability

to train robots to recognize all phrases and objects they may encounter.

1.3 Contributions

This thesis makes 3 main contributions. First, the notions of unknown phrases and un-

known percepts are introduced into a language grounding model called DCG-UPUP-

Away. DCG-UPUP-Away may therefore reason in more complex environments than

the state of the art. Second, DCG-UPUP-Away automatically acquires new concepts

through unsupervised learning, enabled in part by recognition of unknowns. Third,

hypothesized objects allow DCG-UPUP-Away to reason about objects it cannot cur-

rently perceive.

The effectiveness of DCG-UPUP is evaluated both in a simulation and on a real

robotic platform. A large-scale study using natural language commands in a simu-

lated environment shows that a robot can correctly ground phrases around 80% of

the time while in an environment in which it initially knows fewer than half of the

objects present. In addition, a sample trial run on a turtlebot (a simple mobile robot

platform) in a laboratory office demonstrates that, with some modifications to object

recognition software, DCG-UPUP-Away can be used in the real world.
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1.4 Outline

The remainder of this thesis is outlined as follows. Chapter 2 discusses relevant

research especially in the field of natural language grounding, but also in human-

robot dialog, object hypotheses in unknown environments, and learning techniques

in the context of natural language navigation. Chapter 3 presents an intermediate

model that builds upon DCG to associate unknown phrases with unknown percepts.

Chapter 4 augments that intermediate model by creating hypothetical objects that

may be grounded to. Chapter 5 offers a grounding heuristic that allows for more

subtle behaviors based on adjectives and object properties. Chapter 6 evaluates the

performance of DCG-UPUP-Away in simulation trials and a sample demonstration

on real hardware. Chapter 7 concludes with a discussion of the contributions made

in this thesis as well as steps for future work.
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Chapter 2

Background

The work presented in this thesis builds upon research on the natural language

grounding problem. As discussed in the introduction, the grounding problem is for-

mulated as determing the most likely physical meaning for a natural language phrase.

For example, when given in the context of a room with a cube and a cone, the phrase

“the cube” has a high likelihood of referring to the physical cube itself. (Stating that

“the cube” grounds to the cube with 100% probability would be a dangerous assump-

tion — perhaps “the cube” refers to a cone in a different room, or perhaps the person

who said “the cube” incorrectly believes that “cube” is the noun for describing cones.

It is therefore safer to reason about the probability distribution over the space of pos-

sible groundings.) More generally, phrases other than nouns may also be grounded to

their physical meanings (e.g. “skipping” to a hopping sort of run), but such examples

are harder to describe.

A useful perspective in viewing the grounding problem is through the lens of

symbols. Symbols represent semantic entities or concepts in the real world. On the

natural language side, phrases (e.g. “cube”) are associated with symbols (e.g. a canon-

ical cube type). On the real-world side, percepts (e.g. an RGB image of a cube) are

associated with symbols (e.g. a canonical cube type). Such relations are shown in

Figure 2-1. Using such a representation appears to simplify the grounding problem

significantly: finding the correct grounding for a given phrase merely involves trans-
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“sphere”

“cube”

“cylinder”

sphere symbol

cube symbol

cylinder symbol

Figure 2-1: Mappings among phrases on the left, symbols in the middle, and percepts
on the right.

lating from language to symbols and from those symbols to percepts.

Unfortunately, although such a method may work in theory in a world with one-

to-one mappings with symbols, natural language and the real world are too complex

for such an approach to work in practice. For example, consider the fact that several

words may refer to the same symbol (e.g. “cat” and “feline” both refer to a canonical

cat), a single word may refer to multiple symbols (e.g. “dust” refers to a powder of

detritus, the act of removing a powder of detritus, or the act of adding a powder like

sugar), several percepts may contain the same symbol (e.g. two different photos of

a cone), and a single percept may refer to multiple symbols (e.g. a photo containing

a cone and a helmet). Thus, Figure 2-1 is better represented with Figure 2-2. Even

within a simplified block world, language and perception ambiguity is unavoidable.

Given the complexity of phrase-symbol-percept mappings, a simple and deter-

ministic solution to the grounding problem appears impossible. A probabilistic view,

however, elegantly reflects the uncertainty inherent in language. For the remainder

of this section, two probabilistic models used to solve the grounding problem will

be introduced before discussing related - but less directly relevant - work in natural

language robotics.
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“sphere”

“ball”

“cube”

“box”

“cylinder”

“column”

“block”

sphere symbol

cube symbol

cylinder symbol

Figure 2-2: A more realistic but complex mapping among phrases on the left, symbols
in the middle, and percepts on the right. Note how one-to-one mappings are not
guaranteed.

2.1 Grounding with Probabilistic Graphical Models

In any probabilistic view of the grounding problem, the overall equation to be solved

remains the probability maximization equation shown in Equation 1.1. The optimal

grounding γ∗ is the set of groundings that maximizes the likelihood of that set of

groundings, given language λ and a model of the world Υ. By using probabilistic

graphical models, the probability maximization problem may be reformulated as in-

ference on a factor graph, structured according to Equation 1.1.

By introducing a binary correspondence variable φ that represents whether or

not a phrase is paired with the correct grounding, Equation 1.1 may be rewritten as

follows:

γ∗ = arg max
γεΓ|λ|

P (φ = True|λ,γ,Υ), (2.1)

where φ is a vector composed of φεΦ for each grounded phrase. Thus, the correspon-
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dence variable is set to True for each phrase in the overall command λ.

In previous work, the domains of the vector elements γ, λ, and Υ have been

restricted to known phrases and groundings [54, 29]. Furthermore, although some

works reason about unknown environments, many probabilistic grounding techniques

assume fully observable worlds [19, 59]. Thus, the domains of the variables in Equa-

tion 2.1 are shown in Table 2.1.

Table 2.1: The domains of variables in common solutions to the grounding problem.
Groundings fall within the union of known actions (ΓKA) and known objects (ΓKO);
phrases must only use known words (ΛK); the world model only includes perceived
objects (ΥP ); correspondence variables are binary.

Γ = ΓKA ∪ ΓKO
Λ = ΛK

Υ = ΥP

Φ = {True, False}

One way of paraphrasing Equation 2.1 is that the optimal grounding γ∗ is the

vector of groundings such that the probability that the language and the groundings

correspond, in the world model, is maximized. If the most likely setting of a given

φi is true, then individual phrase λi and grounding γi likely correspond; otherwise

they likely do not. Fixing φi to be true for all i ε[1, |λ|] (for each word), and then

searching over the most likely settings of γi therefore achieves the goal of finding the

most likely correct groundings for the entire command.

If the only assumption one makes is that each word has one grounding, the graph-

ical model representation of Equation 2.1 for the phrase “move to the cube” is the

factor graph shown in Figure 2-3. Every grounding γi is related to every other ground-

ing γj through factor f .

There are several problems with this graph, however. First, learning the factor

function f is an extremely difficult problem as it must accept sentences of arbitrary
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λi

φi

true
γi f

iε[1, |λ|]

Figure 2-3: Probabilistic graphical model for the grounding problem without any
assumptions. For each word λi within a command of |Λ| words, the correspondence
variable φi is set to true and the most likely grounding γi is found.

length. Second, the number of computations required to find the most likely value

of γ grows exponentially as the length of the commands increases linearly because

the grounding of each word depends on the grounding of each other word. It is these

two issues that motivate the development of new models that, by making assump-

tions about conditional independence of groundings, allow for efficient computation

of correct groundings.

2.1.1 Generalized Grounding Graphs

The Generalized Grounding Graph (G3) is a model that addresses both issues [54].

The main insight in G3 is that the syntactic hierarchy of natural language commands

can be used to generate a sparsely-connected graphical model of Spatial Description

Clauses (SDCs) [31]. SDCs will be described in more detail later, but for now they

may be thought of as 4-element tuples that contain subjects, actions, landmarks, and

relations between the subject and the landmark. The hierarchy of SDCs is revealed

by examining the parse tree of natural language commands. Parse trees show how

words relate and are generated by rules for combining parts of speech into larger

phrases or clauses until an entire sentence is composed. A sample parse tree is shown

in Figure 2-4.
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TO

NP

DT NN

move to the cube

Figure 2-4: Parse tree for the sentence “move to the cube’.’

This parse tree confirms one’s intuition about language: in the command “move

to the cube,” the verb “move” means the same thing whether one is told to move

to a cube or a sphere. However, exactly what meaning “move” will take depends on

whether one should be moving to or away from an object. Thus, grounding “move”

ought to depend on the preposition phrase as a whole, but perhaps not the noun

directly. In other words, once one understands where the cube is, one must no longer

consider what a cube is. Such reasoning is reflected perfectly in the edge structure of

the parse tree: “move” and “cube” are conditionally independent given the preposition

phrase (PP). In fact, several other papers have exploited parse tree structure for even

more efficiency gains and more complex symbol representations [13].

From this notion of conditional independence, it is possible to merge the original,

fully-connected grounding graph in Figure 2-3 with the parse tree to generate an ef-

ficient grounding graph in Figure 2-5.

VP

VB

PP

TO

NP

DT NN

move to the cube

λ1 λ2 λ3

f1 f2 f3φ1 φ2 φ3

γ1 γ2 γ3

move to the cube

true true true

Figure 2-5: G3 factor graph using the parse tree on the left. The gray γ nodes are
unknown, while the white φ and λ nodes are set to true and phrases, respectively.
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Now, instead of having to simultaneously consider every grounding, computing

the optimal grounding for a word only requires local computation about that word

and child groundings (dictated by the parse tree). This factored approach is reflected

in the final form of the equation solved by G3, shown in Equation 2.3. The domains

for the variables used in Equation 2.3 remain the same as the domains written in

Table 2.1 for known phrases, known action and object groundings, binary correspon-

dence variables, and a perceived world model.

P (φ = True|λ,Γ,Υ) = P (φ = True|SDCs(λ),Γ,Υ) (2.2)

=
1

Z

∏
i

Ψ(φi, SDCi,Γci ,Υ) (2.3)

The final form of Equation 2.3 states that the probability of a correct grounding

equals the product of a feature function Ψ evaluated for every correspondence variable

φi, spatial description clause SDCi, child groundings Γci , and the world model Υ (all

normalized by the partition function Z). This locality — that the overall probability

can be computed through the product of many functions that only depend on a single

phrase, the SDC for that phrase, and child groundings — is precisely what combats

the otherwise exponential growth of naïve approaches.

The feature function Ψ, is a log-linear function that associates binary functions of

language (e.g. if a word is present) with binary functions of groundings (e.g. if a box

is present). These binary functions (also called features) are combined in a weighted

sum according to learned weights µ. The exact form of Ψ, therefore, is shown in

Equation 2.4:

Ψ(φi, SDCi,ΓCi
,Υ) = exp

(∑
fεF

µff(φi, SDCi,ΓCi
,Υ)
)

(2.4)
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The training procedure for G3 learns the weights µf for each binary feature f

from the set of all hand-coded features F . Weights are learned using the Limited-

memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) by exploiting the convexity

of the function Ψ [35]. Thus, the overall Ψ function is merely the exponential of a

weighted combination of binary features that return 0 or 1, depending on what phrase

or grounding is being used.

2.1.2 Distributed Correspondence Graphs

While G3 formally drastically improves the efficiency of conducting inference on a

probabilistic graphical model to solve the grounding problem, such inference on the

graph occasionally remains quite slow, especially when phrases refer to groups of ob-

jects (e.g. “drive between the cube, the sphere, and the cylinder.”). The Distributed

Correspondence Graph (DCG) addresses this problem in two ways - by building a

larger, but ultimately more efficient, graphical model and inference procedure and by

reasoning over constraints instead of paths and objects [29].

First, the structure of DCG evolves from G3 so that, rather than fixing φ to true

and then searching over Γ to find the most likely groundings, grounding nodes γij may

be introduced into the graph, each set to a possible grounding, and then search is

conducted over the most likely settings of φij. The final DCG model shown alongside

the same parse tree for the command “move to the cube” is shown in Figure 2-6.

Although the graphical model may appear complex, it is actually quite simple.

Each parsed phrase appears in a λi node at the bottom of the graph. Each λi node

is connected to a factor linking the phrase to a correspondence variable φij and a

grounding variable γij. Each column represents possible groundings for the phrase; in

this simplified example, the domain of possible actions is restricted to a single go_to

action, the domain of preposition groundings is restricted to within or near, and

the domain of noun groundings is restricted to cube or sphere. Finally, the edges

between columns, going from each factor in one column to each φij and γij in the
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PP

TO

NP

DT NN

move to the cube

(a) Parse tree for the sentence “move to
the cube.”

(b) DCG factor graph for the command
“move to the cube.” Unknown corre-
spondence variables φij are gray; known
groundings γij and phrases λi are white.

Figure 2-6: DCG graphical model with inter-column structure generated from the
parse tree on the left

next column, represent the reliance on child groundings. In this case, because the

parse tree is binary, each column (except the rightmost one) has exactly one child

grounding, so there are only edges between adjacent columns.

The structure of DCG is further revealed by recreating the original graphical

model in plate notation, as in Figure 2-7. The similarities between G3 and DCG are

further revealed by the minimal structure. Of particular note, is the domain of each

γij, as each plate is repeated by letting γij range over Γ.

Before defining the domains of the variables in the DCG graph, however, it is

important to explore the second idea in DCG: reasoning over constraints rather than

objects allows for extremely efficient inference when considering sets of objects. Re-

call that the entire reason for G3 is that it breaks the exponential computational costs

of a fully connected grounding graphical model. While G3 achieves this goal most of
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λ3

f3j

φ3j
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move to the cube

γ1jεΓ γ2jεΓ γ3jεΓ

Figure 2-7: DCG graphical model redrawn in plate notation.

the time, it fails when considering sets of objects (e.g when grounding the command

“go between the cube and the sphere”). As the number of related objects grows, the

G3 computational costs increase exponentially.

Therefore, DCG replaces the domains of the grounding variables in G3 (previously

the set of all known actions and objects) with a set of constraints. A constraint is

formally defined as a function of the robot state, a fixed input, and time interval

that returns true if the state matches the input during the specified time interval

and false otherwise. For example, a constraint might specify that the robot must

be within 1 meter of a cube between 5 and 10 seconds from now. Now that DCG

grounds to constraints rather than specific paths or objects, grounding and planning

have been effectively split into two problems: first DCG determines what constraints

are encoded in the language command, then a planner may accept those constraints

and generate a series of actions that satisfy all the constraints. In fact, the idea of

dividing natural language planning into a grounding phase followed by a planning

phase has subsequently appeared in several other papers for robotic navigation or

recipe-following [37, 5, 9].

It is now finally possible to formally define the problem DCG tries to solve and

the domains of the variables it uses. Recall that DCG fixes grounding variables and

solves for correspondence variables, so Equation 2.1 from G3 may be transformed to
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Equation 2.5:

φ∗ = arg max
φεΦ|λ|

P (φ|λ,γ,Υ). (2.5)

The equation can be paraphrased as saying that the most likely correspondence

variables φ can be found by finding the correspondence variables that maximize the

likelihood of phrases and groundings, given a model of the world. By using the same

factorization trick from G3 assuming independence of child groundings, Equation 2.5

may be rewritten as Equation 2.6, where Equation 2.7 is used to emphasize that

DCG uses the same system of learned log-linear feature functions to compute the

most likely correspondence variables.

φ∗ = arg max
φεΦ|λ|

n∏
i=1

p(φij|γij, λij,Γcij ,Υ) (2.6)

= arg max
φεΦ|λ|

1

Z

∏
i

Ψ(φij, γij,Γcij ,Υ) (2.7)

Formal definitions of the domains used in DCG for solving these equations are

shown in Table 2.2.

Table 2.2: The domains of variables in DCG. Groundings fall within the space of
pre-defined relations (e.g. near, within, etc.) crossed with known objects; phrases
must only use known words; the world model only includes perceived objects; corre-
spondence variables are ternary.

R = {set of hand-coded relations}
Γ = R× ΓKO
Λ = ΛK

Υ = ΥP

Φ = {Active, Inverted, Inactive}

Note how the domain of groundings has been changed from actions and objects to

constraints. Because of this change, the correspondence variables have in turn been

transformed from binary to ternary variables that can take on the values of Active,

Inactive, or Inverted. Setting φij to active in DCG is much like setting φi to true
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in G3; it means the constraint is correctly grounded. For example, the phrase “near

the cube” has an active correspondence with the region near a cube. Conversely, the

phrase “far from the cube” has an inverted correspondence with the region near the

cube because “near” and “far” are antonyms. Finally, correspondence variables are set

to inactive if the language has no bearing on a particular constraint (e.g. “near the

cube” has no relation to the constraint of being near a sphere as well).

In this work, DCG-UPUP-Away will continue to modify the structure of the DCG

graph by expanding the domain of possible phrase to include unknown nouns and

the domain of possible groundings to include unknown objects. Furthermore, the

world model will be adapted to contain hypothetical objects that may exist outside

the robot’s field of view. Finally, additional binary features will be introduced to

the log-linear model so that DCG-UPUP-Away may reason intelligently within the

expanded domains.

2.2 Human-Robot Dialog

While DCG-UPUP-Away builds most directly on G3 and DCG, other work in natural

language robotics has guided the work in this thesis. Research into human-robot

natural language dialog and question-asking indicates a broad area for future im-

provements to DCG-UPUP-Away. Instead of silently executing commands, as is done

in traditional language grounding research, a natural extension is having robots that

talk back. For example, should a human issue an ambiguous command (e.g. “pick up

the bottle” when facing two bottles), a robot might ask for more information rather

than silently executing a low-confidence grounding.

Such scenarios are considered in [46]. Ros et al. broadly approach resolving lan-

guage ambiguity using two techniques. First, a robot attempts to model the human’s

perspective on the scene to determine which objects may be visible to the human.

This technique relies on insights from child development studies that show how chil-
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dren employ such reasoning on their own and has been successfully used in other

robotics literature [39, 40, 56, 55]. Importantly, this first strategy requires no ad-

ditional dialog. The second strategy, however, relies on the robot asking a human

for more information. For example, the robot may ask for spatial relations or object

features in distinguishing between objects. Choosing exactly which question to ask,

of course, requires reasoning about what information best discriminates among po-

tential groundings.

Deits et al. explore precisely that issue of how to choose which questions to ask

in [18]. As in much research in robotic question-asking, a balance must be struck

between too many questions and not enough questions while simultaneously deter-

mining what sorts of question to ask [22, 48]. The authors in [18] use the entropy of

the probability distribution over groundings to estimate the grounding uncertainty.

Higher entropy, therefore, leads to more questions. As expected, asking questions

leads to a greater grounding accuracy rate for all sorts of questions asked.

While the above-mentioned research largely uses hand-coded templates for gener-

ating questions, other work explores the topic of learning how to compose questions

automatically. One system, CEDERIC, mimics human learning and uses only two

bases cases to ask questions as ranging from confirmations (e.g. “Is this view ok?”)

to specifications (e.g. “I have several schools to choose between. Which one do you

mean?”) [20]. Conversely, significant research has been conducted on generating natu-

ral language statements instead of questions. Such systems that use inverse semantics

have a broad range of applications including directing humans to their destination,

explaining what a robot is about to do, and automatic translation [17, 51, 36].

Such research provides a clear path for future improvements upon DCG-UPUP-

Away, which offers no dialog. In fact, [18] interfaces nicely with G3 and thus may

presumably be easily adapted to operate with DCG or DCG-UPUP-Away.
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2.3 Learning Semantic Meanings

Setting aside actual human-robot interaction, a large corpus of research focuses en-

tirely on techniques for learning the semantic meanings of language; presumably once

a robot learns what language means, grounding such language becomes much easier.

Much of the work in this field draws heavily on observations of children, who exhibit

prodigious learning rates of 1 new word every 3 days when they are only 4 months

old to 12 words a day when they are 8 years old [21, 2]. Furthermore, such learning

appears to require minimal structured adult supervision; children quickly convert few

experiences into more general knowledge (e.g. children do not need to see thousands,

or even hundreds of cats before knowing what a cat is) [8, 15, 43, 27]. This indicates

that robots may eventually be able to perform similarly and learn new concepts in a

semi-supervised or unsupervised manner.

One common approach for autonomous language learning provides a robot with

semantic representations of the world that must be associated with language. Such as-

sociations may be formally expressed using predicate logic, but ultimately the problem

of language acquisition is reframed as a mapping problem from words to pre-defined

semantics [14, 49, 61, 23]. Unfortunately, hand-labeled representations necessarily re-

quire intensive human involvement in generating training data [41]. As a result, other

work takes the opposite approach and tries to associate words directly to objects or

actions without creating formal symbolic representations. For example, using online

raw video data and sentences, a system is able to learn shape categories without being

told ahead of time that four right angles define rectangular objects [60, 47].

Finally, other works combine ideas from both approaches to cluster raw sensor

data into semantic units that are in turn associated with language [12, 25, 38]. These

models appear particularly impressive. For example, the system developed in [25],

called the Transportable Word Intension Generator (TWIG) manages to learn prepo-

sitions such as “above” and “below” and deitic pronouns like “I” and “you.” This
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system, like DCG-UPUP-Away, performs best when provided with training examples

that include one or fewer unknown words.

Although this work is extremely impressive, its domain is restricted to learning

through natural language statements as opposed to commands. For example, a robot

may be shown a cone and told “this is a cone,” but the robot will not be expected

to approach a cone when told “go to the cone.” Thus, the robot always remains in a

sort of learning mode (or switches between mutually exclusive learning and execution

modes) as opposed to DCG-UPUP-Away, which attempts to simultaneously learn and

execute language commands.

2.4 Grounding Spatial Relations

Rather than trying to solve the general language grounding problem or teach robots

arbitrary statements, some researchers have focused in particular on the language of

spatial relations. Spatial relations are ubiquitous in language — not only are they

directly applicable to language directions such as “go to the cube to the left of the

sphere,” but they are often used in more abstract thoughts as well (e.g. “their ideolo-

gies fall on opposite sides of the spectrum”).

Early research by Jackendoff focuses on explicit categorization of all spatial re-

lations by examining prepositional phrases, verbs, and actions [30]. Building upon

such work, the fields of linguistics and artificial intelligence have closely examined

how spatial relations in language may shed light on internal representations of the

world [33, 34, 28]. Only a handful of elementary spatial relations, it is argued, are

needed to completely represent any natural language describing the relative position

of two objects. Although such works provide an elegant model for understanding how

humans may think about spatial language, they do not directly translate the theory

into practical behavior for robotics. In fact, some research indicates that humans use
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spatial relations differently when addressing other humans as opposed to robots [42].

In order to directly address this gap, others apply the idea of composing simple

spatial relations to real-world robots [1]. For example, a mobile industrial robot is

given primitive relations (e.g. above, below, left, right, at, near, etc.) and manages

to combine the relations to parse more complex statements such as “near the block on

the left.” Furthermore, the system is able to translate its symbolic understanding of

these relations into a potential field representing where, in metric space, an object is

likely to be located [52]. Other work combines spatial relations with inverse semantics

to allow a robot to describe its environment using to a human in natural language by

saying things like “there is an object on the right” [50].

Finally, some research explicitly couples spatial relations to the grounding prob-

lem. In fact, the predecessor to the probabilistic graphical models G3 and DCG that

motivates this work relies heavily on Spatial Description Clauses (SDCs) [31]. Natu-

ral language commands are executed by first parsing the language into a hierarchy of

SDCs, and then finding a sequence of actions that best satisfies the SDCs. Each SDC

alone is relatively simple: it is composed of a figure (the subject of the sentence), a

verb (the action), a landmark (an object), and a spatial relation (a relation between

the figure and the landmark). Recently, SDCs, and spatial relations more generally,

have been used to adapt DCG or build entirely new graphical models [44, 32]. The

modified DCG model, for example, manages to ground abstract concepts like “the

row on the left” when used facing collections of scattered blocks on a tabletop [44].

Ultimately, the work on spatial relations in natural language illustrates a different

approach to the grounding problem than the approach used here. Although this

thesis explicitly does not investigate phrases with spatial relations, one could clearly

incorporate some of the tools from this field to disambiguate between objects and

improve the robustness of DCG-UPUP-Away.
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2.5 Object Hypotheses for Unknown Environments

Another field of study closely tied to the field of language grounding explores the topic

of inferring information about unknown environments using language. For example,

if a robot is placed in a room and told to “pick up the ball just outside the door,” a

robot should be able to easily deduce that a ball is located near the door. A more

formal framing of that intuition indicates that grounding systems should reason over

a belief distributions over objects rather than a deterministic known map.

Duvallet et al. use such a framework to propose a latent map that is partially

observed by language [19]. Thus, in the example of a ball outside the door, the phrase

“pick up the ball outside the door” generates a region of high probability near the

door and low probability further away. Sampling from this distribution, as well as

updating the distribution as more observations are made, yields a useful map to plan

in. Similarly, other work generates distributions over maps or exactly placing objects

in unknown environments if their locations are uniquely described [57, 59].

In the absence of localizing language, however, these sophisticated techniques

provide relatively little information about where an object may be located. There-

fore, because this research is restricted to simple phrases that lack spatial relations,

DCG-UPUP-Away uses a far simpler technique for hypothesizing objects in unknown

locations. Future development, however, could incorporate some of the methods pre-

sented for more intelligent reasoning about unperceived objects.
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Chapter 3

Grounding to Unknowns

`έοκια γοῦν τούτου γε σμικρῶ τινι αύτῶ τούτω σοφώτερος ε`ίναι, `ότι `ά μὴ ο`ίδα ούδὲ

ο`ίομαι είδέναι

“Indeed I seem to be wiser than him in this little matter in that I don’t think I know

what I don’t know”

—Plato’s Apology

The DCG model developed by Howard et al. efficiently grounds some phrases,

but it is only capable of reasoning about objects and phrases that the system has

already been trained on [29]. For example, if DCG is trained with the phrase “chair”

and recognizes chairs in the real world, it can subsequently operate in an environ-

ment with chairs. DCG is unable, however, to intelligently reason about new phrases

or percepts in the absence of relevant training. In the same scenario as previously

described (DCG has been trained with chairs, but only chairs), if a robot is placed

in a room full of chairs and a single sofa and is told “drive to the sofa,” an empty

grounding set is returned. In other words, because DCG cannot reason about the

phrase “sofa,” it returns that “sofa” does not ground to anything. Given the context,

however, any human would be able to deduce that “sofa” refers to the only unknown

object in the scene - the sofa.
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In this chapter, the DCG model is extended to DCG-UPUP (short for Distributed

Correspondence Graph - Unknown Phrase Unknown Percept). The main technical

insight is that explicitly recognizing when phrases or percepts are unknown allows for

intelligent learned behavior in new scenes. The remainder of this chapter is divided

among recognizing when phrases are unknown, recognizing when percepts are un-

known, training the model to associate unknown phrases to unknown percepts, and

permanently learning new symbols. By the end of chapter, DCG-UPUP will be able

to handle exactly the chair-sofa DCG failure case described previously.

3.1 Unknown Phrases

A necessary step in learning to associate unknown phrases with unknown percepts is

first recognizing when a phrase is unknown. For the sake of simplicity, development

is limited to recognizing unknown nouns (extensions to verbs will be discussed in

the future work section and has been briefly examined in [10]). If DCG-UPUP is

able to recognize when a noun is unknown, it will have significant insight into what

the noun should ground to (specifically, not an object it already knows). Just like

a high-schooler taking a multiple-choice vocabulary quiz when he recognizes all the

words except for one, DCG-UPUP can use a learned process of elimination to ground

unknown nouns to unknown objects. None of this is possible, however, without first

recognizing when nouns are unknown.

Before immediately recognizing unknown nouns, one must define what it means

for a phrase to be unknown. In the context of the grounding problem, a natural

definition arises based on whether or not the system has been trained on how to

ground that noun. Thus, if the system has been trained to ground a phrase to a

known type, then that specific phrase is considered known – otherwise the phrase is

labeled unknown. The subtlety of requiring known nouns to ground to a known type

(as opposed to merely appearing in the training examples anywhere) comes from the

necessity of including training examples in which unknown nouns ground to unknown
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objects. The nouns used in such examples should not subsequently be classified as

known words.

Keeping track of which nouns are known, based on the above definition, is straight-

forward. The training procedure for the LLM (the log-linear model used for DCG) is

augmented to also generate a set of all the nouns seen in training that were grounded

to a known object type. (For now, the requirement that the phrase grounds to a

known type may seem odd given that no unknown types have been introduced yet,

but that will change in the next section.) The built up set of known phrases, hence-

forth referred to as κ, therefore is a snapshot at any given moment of exactly which

nouns are known and may be thought of as part of the world model Υ. Note that

κ grows over the course of the LLM training, so a phrase that is unknown at the

beginning training may be known by the end.

For the purposes of causing DCG to respond to unknown nouns, the final step

in recognizing a noun as unknown is adding a feature to the LLM that returns true

when an unknown phrase is used. Using the definition of unknown phrases and the

construction of the κ set, one may easily see that the fuphrase feature should fire

(i.e. return true) precisely when a noun is not found within κ. Therefore, when the

feature is first created, it accepts κ as an argument that it keeps track of. Later,

when training the LLM, fuphrase is queried with a phrase, at which point the feature

returns true if the noun is within κ and false otherwise. This new feature - fuphrase

- is similar to many of the other features already used to train the LLM; from a

theoretical standpoint, however, it is the only feature that is self-reflective, in a sense,

and requires a model of its own intelligence. The formal definition of fuphrase is shown

in Equation 3.1:

fuphrase(φij, γij, λi,Γcij ,Υ) =

0, if λi ε κ

1, else
(3.1)
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3.2 Unknown Percepts

In parallel to detecting when a phrase is unknown, DCG-UPUP must recognize when

a percept is unknown. Initially, the raw data used to perceive the world are color

images taken by a robot. Generally, though, these data can be anything (e.g. sonar

readings as well) as long as it is possible to translate the data into an intermedi-

ate stage in which object types and locations are recorded. In this context, a single

percept is defined as an instantaneous estimate of the object type and location; it

is assumed that it is possible to generate such percepts from raw data. Therefore,

recognizing unknown percepts becomes the simpler task of detecting unknown objects

rather than reasoning over the raw data directly.

Once again, before attempting to recognize unknown percepts, one must first de-

fine what it means for a percept to be “unknown.” Just as phrases are defined as

unknown if they never appear in training examples, one may similarly say that ob-

jects of a type that never appeared in training data are unknown. For example, if

an object recognizer has been trained to recognize cubes, spheres, and cylinders, any

instance of a cube, sphere, or cylinder would be known but a cone would be unknown.

Of course, such a definition merely translates the problem of deciding whether an ob-

ject is unknown into the problem of deciding how well it matches a known category.

There are myriad ways to quantify how well objects match known categories: support

vector machines (SVMs) report distances from boundaries while other multi-class de-

tectors report probability distributions over known classes [26, 7]. Generally, the field

of novelty detection — determining when data belong to a new class instead of an

existing one — remains an active field of research [6, 45].

In this particular implementation, an image classifier based on the Histogram of

Orientated Gradients (HOG) is used as part of a three-step method [16]. First, an

object proposal toolbox from [62] generates tight bounding boxes around objects in

an RGB image of the scene. In theory, any classification-agnostic object proposal
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software may be used, including [58] or [24]. Second, each bounding box is input into

a standard SVM classifier offered by MATLAB that uses HOG features as well as

the aspect ratio of the bounding box. Third, given the reported distances from the

boundaries in the SVM, if the classifier appears uncertain (as defined later in this

section), the object is labeled as “unknown” – otherwise the most likely classification

is used.

The confidence of the classifier is approximated by examining the difference be-

tween the signed margin of the most likely classification and the second most likely

classification. Since the SVM is a discriminative model among non-overlapping classes,

the first margin is always positive and the second is always negative. (Using mutually

exclusive classes is motivated in part by [25] which uses decision trees to represent

phrase meanings.) Thus, objects that fall squarely within a category generate large

differences while objects near classification borders yield small differences. Comparing

this difference to a threshold allows one to say whether or not an object is unknown.

As the number of classes grows, however, classification margins necessarily shrink, so

some method of normalizing the threshold by the number of categories is required.

The general form of the final classification equation used in this thesis is shown in

Equation 3.2:

χ =

“unknown”, if mdiff <
mthresh

(n−1)Zexp

χsvm, otherwise
(3.2)

where χ is the final classification, n is the number of classification categories, mdiff

is the difference between the margins of the best and second-best classifications, and

χsvm is the classification that maximizes the margin from the SVM. Finally, by play-

ing with intercept mthresh and normalization parameter Zexp until sample cases pass,

one may generate the actual equation used for determining the unknown cutoff.

In this research, the best values for mthresh and Zexp were found to be 0.6 and

1.2, respectively. These numbers were determined though cross-validation of training
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data; because object recognition is not the emphasis of this research, theoretical

motivations for these values are left to future research. The values for mthresh and

Zexp were generated by systematically testing the classifier with several images of

both known and unknown objects. Figure 3-1 shows sample test images of a cube,

sphere, and fire hydrant. Below each image are the classification margins generated

by a classifier trained only on cubes, spheres, and cylinders.

(a)
cube 0.2281

cylinder -0.2281
sphere -0.5657

A test image
of a cube, with
margins.

(b)
cube -0.2959

cylinder -0.6862
sphere 0.2959

A test image
of a sphere, with
margins.

(c)
cube -0.0584

cylinder -0.3859
sphere 0.0584

A test image
of a fire hydrant
(unknown), with
margins.

(d)
cube -0.0443

cylinder -0.1274
sphere 0.0443

A test image
of a construction
(unknown), with
margins.

Figure 3-1: Sample generated test images. The bold classifications are the most likely
known classification type. Note how the unknown fire hydrant and cone have very
small margins, resulting in a final classification of “unknown.”

A new image classifier, trained on cubes, spheres, cylinders, and hydrants results

in different behavior: this time the fire hydrant is classified as a known type, but

the cone remains unknown. Classification results and margins for that classifier are

shown in Figure 3-2.

The final modification made to the object recognizer was adding color recognition.

Because the HOG classifier is trained using color-invariant features, only the object

type (e.g. “cube”) is reported. Given the simplicity of the simulated environment,

however, it is easy to compute the mean RGB values across the bounding box of each

object and report the greatest color value. Thus, the final object classifier returns

the object type as well as color. The utility for color as a grounding heuristic will
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(a)
cube 0.1160

cylinder -0.1160
hydrant -0.4624
sphere -0.2915

A test image
of a cube, with
margins.

(b)
cube -0.1856

cylinder -0.3956
hydrant -0.3853
sphere 0.1856

A test image
of a sphere, with
margins.

(c)
cube -0.2775

cylinder -0.4418
hydrant 0.2497
sphere -0.2497

A test image
of a fire hydrant,
with margins.

(d)
cube -0.0435

cylinder -0.0730
hydrant -0.0852
sphere 0.0435

A test image
of a construction
(unknown), with
margins.

Figure 3-2: Sample generated test images. The bold classifications are the most likely
known classification type. The classifier has been trained on cubes, spheres, cylinders,
and hydrants, so only the cone is unknown.

be discussed in detail in Chapter 5, but the intuition is that color allows for DCG-

UPUP-Away to differentiate between two objects of the same type, as long as they are

different colors. This is particularly useful for differentiating between two unknown

objects of different colors.

3.2.1 Alternate Approaches to Object Recognition

It is important to emphasize that, the overall approach presented in this thesis is

agnostic to which particular object recognizer is used. Thus, while a specific object

recognizer and unknown-detection mechanism have been proposed here, any object

recognizer that can recognize objects and report when they are unknown is accept-

able. In fact, an object recognizer based on Speeded Up Robust Features (SURF)

was first used in DCG-UPUP [4]. That particular recognizer returns a probability

distribution over the object classes to indicate the most likely object type. When

developing with the SURF-based recognizer, rather than using the difference of the

top-two confidences to detect unknowns, the normalized entropy of the distribution

was used, where normalized entropy is defined in Equation 3.3 as follows:
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norm_entropy =
−1

num_classes

num_classes∑
i=1

p(classi) ∗ lognum_classes(p(classi)). (3.3)

When the SURF object recognizer is given an object that does not clearly be-

long to a known category, the probability distribution tends to approach the uniform

distribution across all categories. Thus, the entropy increases, likely indicating an

ambiguous and therefore unknown object. While either one of the changes to the ob-

ject classifier (using SURF features instead of HOG features and using a probability

distribution instead of classification margins) could have been used, neither seemed to

distinguish well between objects when using fewer than 10 training images per class,

as is done in this thesis.

The focus of this research was on a model that assumes a perfect perception sys-

tem that returns object classifications (whether the true object class or “unknown”).

In fact, while evaluating the full DCG-UPUP-Away system, the majority of the failure

cases arose from improper object classification. As a result, the majority of exper-

imental results were generated using manual object recognition — humans, rather

than an object classification program, labeled objects for use by DCG-UPUP-Away.

Thus, there is potential to explore alternative features or classification frameworks for

an automated object classifier to make DCG-UPUP-Away completely autonomous.

3.3 Training Unknown Phrase - Unknown Percept

Associations

Recall that the goal of DCG-UPUP is to learn that unknown phrases often refer to

unknown objects, much like how humans use process of elimination in unfamiliar sit-

uations. Thus, it is insufficient merely to recognize phrases and percepts as unknown;

the DCG-UPUP model must be trained to ground unknown phrases to unknown
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objects. Although this may appear to be a daunting task, nearly all the necessary

framework is already in place.

First, we must introduce a notion of an unknown symbol. Much like the symbol

for cubes relates phrases (e.g. “cube” and “cuboid”) to percepts (e.g. images of cubes),

the unknown symbol relates unknown phrases to percepts of unknown objects. Con-

cretely, this is done by associating a feature that fires where an unknown phrase is

detected with a feature that fires when an unknown object is detected. The necessary

work for these features has already been presented, however. For one thing, fuphrase

already detects when phrases are unknown. Secondly, the original version of DCG

already uses features that detect what object type is being grounded to. All that is

necessary, therefore, is to train the association between fuphrase firing and a feature for

object type “unknown_type”. This trained association defines the unknown symbol.

In total, 7 positive training examples were added to the 40 existing positive train-

ing examples to train the unknown_phrase - unknown_percept association. (Nega-

tive training examples are generated automatically by changing the correspondence

variable settings, as is done in DCG.) Each example uses a new word that has never

been grounded to a known type (e.g. “hammer,” “mallet,” “bottle,” and “crate”).

Within each training example, instead of the noun grounding to a known data type

such as cube_type, the noun is grounded to unknown_type. Crucially, by varying

which unknown noun is used but continuing to ground to the unknown_type, the

LLM learns that the exact phrase does not matter - only whether or not the noun

appears in κ, the set of known words.

These changes alone are enough to solve the sofa and chairs problem presented at

the beginning of this section. In brief, the situation involves a robot that has only

been trained with chairs but is facing a sofa and several chairs being told “go to the

sofa.” DCG-UPUP behaves exactly as desired:

1. The object detector segments out the sofa and chairs from its input image;
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2. The object classifier returns that each chair is a chair and the sofa is an unknown

object;

3. The fuphrase feature returns that the noun “sofa” is unknown;

4. The trained DCG-UPUP model recognizes that unknown phrases are often as-

sociated with unknown objects and returns that “sofa” is referring to the sofa.

DCG-UPUP has learned the notion of unknown symbols. Unknown phrases are

associated with unknown percepts, exactly as desired. There remain, however, lim-

itations to this result: DCG-UPUP assumes that phrase only refer to objects that

are currently perceived, and there is currently no way to differentiate between two

unknown objects (e.g. a cone and a fire hydrant).

3.4 Technical Changes

Although a high level view of DCG-UPUP has been presented, the real difference be-

tween DCG and DCG-UPUP is revealed by looking at the domains of the variables in

the new DCG-UPUP graphical model. First, it appears that the underlying equation

that both DCG and DCG-UPUP are trying to solve remains the same.

Table 3.1: Identical equations are used for DCG and DCG-UPUP

DCG φ∗ = arg max
φijεΦ|λ|

n∏
i=1

p(φij|γij, λij,Γcij ,Υ)

DCG-UPUP φ∗ = arg max
φijεΦ|λ|

n∏
i=1

p(φij|γij, λij,Γcij ,Υ)

The crucial difference is the domains for λi, γij, and φij. In the Table 3.2, the do-

mains for language and groundings are shown to illustrate the changes made to DCG.

In addition, one may see how the two additional features for detecting unknown

phrases and unknown objects are incorporated into the LLM. Recall that DCG uses

48



Table 3.2: Variable and domain definitions for DCG-UPUP. Unknown objects (ΓUO)
and phrases with unknown nouns (ΛU) are now permitted.

Γ = ΓKA ∪ ΓKO ∪ ΓUO
Λ = ΛK ∪ ΛU

Υ = ΥP

Φ = {True, False}

a log-linear model that combines many binary features to associated phrases with

objects. The main equation for DCG-UPUP may thus be rewritten, as was done for

DCG, as a product of Ψ, the log-linear function that is learned, for each possible

grounding. This time, instead of only using the features from DCG, though, Ψ in-

cludes the two extra unknown features. This change is reflected in Equation 3.5.

φ∗ = arg max
φεΦ|λ|

1

Z

∏
i

Ψ(φij, γij,Γcij ,Υ) (3.4)

Ψ = exp
( ∑
fεFDCG

[
µff(φij, γij, λi,Γcij ,Υ)

]
+

∑
fεFUnknown

[
µff(φij, γij, λi,Γcij ,Υ)

])
(3.5)

Finally, one may assemble the probabilistic graphical model for DCG-UPUP,

shown in Figure 3-3, using the expanded domains. The possibility for grounding

to an unknown object appears in the graph as an extra plate on top of the rightmost

column, containing the noun.

By varying the natural language command and expanding the plate notation from

Figure 3-3, one may see how DCG-UPUP is solved for both known and unknown nouns

in Figure 3-4. In this scenario, DCG-UPUP has been trained with cubes, spheres, and

cylinders. The robot faces a cube, sphere, and cone, which is recognized as unknown.
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λ1

f1j

φ1j

γ1j

λ2

f2j

φ2j

γ2j

λ3

f3j

φ3j

γ3j

f3j

φ3j

γ3j

move to

the cube

γ1jεΓ γ2jεΓ

γ3jεΓKP

γ3jεΓUP

Unknown Groundings

Known Groundings

Figure 3-3: The DCG-UPUP probabilistic graphical model. Note how the domain of
possible object groundings has been expanded to include unknown perceived objects
(ΓUP ) in addition to known perceived objects (ΓKP ) from before.

λ1 λ2 λ3

f11 f21

f22

f31

f32

f33

φ11 φ21

φ22

φ31

φ32

φ33

γ11 γ21

γ22

γ31

γ32

γ33

move to the cube

go_to action near

within

sphere

cube

unknown

λ1 λ2 λ3

f11 f21

f22

f31

f32

f33

φ11 φ21

φ22

φ31

φ32

φ33

γ11 γ21

γ22

γ31

γ32

γ33

move to the cone

go_to action near

within

sphere

cube

unknown

Figure 3-4: DCG-UPUP grounds a known phrase “cube” to a known object on the
left but grounds an unknown phrase “cone” to an unknown object on the right. Green
φs show true correspondences for the solved graph; red φs show the converse.
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3.5 Unsupervised Learning and Concept Acquisition

In the previous section, DCG-UPUP infers that unknown phrases are associated with

unknown objects, so when it is given the phrase “sofa” and sense a sofa for the first

time, it claims that “sofa” must be referring to the sofa. In the absence of an ac-

tive learning mechanism, however, the next time DCG-UPUP sees a sofa or hears

the phrase “sofa,” it will once again treat the percept and phrase as unknown. This

is undesirable. Instead, ideally the robot would remember what sofas look like and

that the word “sofa” refers to sofas. In other words, the robot should learn about a

symbolic sofa.

Perhaps the simplest way to teach DCG-UPUP about the new symbol is to gen-

erate new training examples, with the relevant new phrase and a new object type,

and create a new LLM trained with the original and new training files. (It may be

possible to efficiently update the LLM rather than rebuilding it from scratch, but that

would only change the runtime of the program, not its overall behavior.) Generating

the training examples, too, is relatively straightforward: the output of DCG-UPUP,

supplemented with a description of the full environment, exactly matches the infor-

mation contained within a standard training example. In other words, DCG-UPUP

can autonomously generate new training examples that will permanently teach it new

symbols.

There are, of course, several subtleties to take care of. First, the object recognizer

must be retrained to correctly classify the new object, but that can be achieved by

saving a snapshot of each object and relabeling and retraining whenever a new type

is created. Second, DCG-UPUP must incrementally expand the set of known object

types in include new types as they are encountered. Finally, the new object type, and

the new phrase, must be paired with new features that detect them (e.g. a feature

to detect when the new phrase is used or a new feature that detects if the object

is perceived). The rest of the learning (e.g. updating the set of known words κ to
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contain the new phrase) occurs automatically when the LLM is retrained. Figure 3-5

shows the workflow from command execution, through generating unsupervised train-

ing examples, to execution of a new command after retraining.

“go to the drill”

unknown cube

(a) DCG-UPUP, trained on
cubes, spheres, and cylin-
ders, is told to “go to the
drill” and recognizes the
“drill” and the physical drill
as unknown.

(b) A snapshot of the drill
is saved for retraining the
object classifier, and a new
training example is written
from the grounding output
of DCG-UPUP.

“go to the drill”

drill cube

(c) After retraining, DCG-
UPUP has learned to rec-
ognize drills and that “drill”
grounds to drills.

Figure 3-5: Unsupervised learning allows DCG-UPUP to first recognize drills as un-
known and later as their own type.

In order to improve the robustness of both the language grounding and object

recognition models, this unsupervised learning technique is used after every natural

language command has been executed to completion. (The LLM and object rec-

ognizer are retrained only when manually commanded.) This delayed retraining is

particularly useful for the object recognizer, which often struggles to correctly classify

objects based on only a single sample image of an object type. Instead, if the robot

saves several snapshots of an object as it drives towards it, the robot may generate a

more complete and robust image training set. Sample snapshots in Figure 3-6 from

a real-world trial in which a turtlebot was given the command “go to the cone” show

how DCG-UPUP stores images of the cone as it approaches its destination.
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Figure 3-6: DCG-UPUP saves snapshots of the object it has grounded a command
to, thus providing training examples for the object recognizer.

Finally, it is important to note there are dangers with this unsupervised learn-

ing approach. As with any fully unsupervised learning technique, concept drift risks

worsening the performance of the system over time. For example, if DCG-UPUP has

been trained to recognize cubes, spheres, and cylinders and hears the command “go to

the fire hydrant,” the unknown phrase “fire hydrant” will ground to the first unknown

object that the robot sees. If that object is not a fire hydrant but a cone, after retrain-

ing, the object recognizer will subsequently perceive cones as fire hydrant types. This

error will only worsen as the robot continues to ground phrases since “fire hydrant”

will no longer be an unknown phrase, and cones will be perceived as fire hydrant types.

The obvious mitigation for concept drift is transforming the unsupervised learning

into semi-supervised learning with humans in the loop. A human user, for example,

could confirm or deny proposed new training examples. In fact, significant research in

information-theoretic dialog has already been conducted and would fit well with this

work [18]. Such research, however, must wait for future work, discussed in Chapter 7.

3.6 Synonyms

In its current proposed form, DCG-UPUP may be easily adapted to yield one other

important result: by assuming that phrases only refer to objects the robot can cur-

rently perceive, DCG-UPUP can learn synonyms. Unfortunately, this assumption

will be violated in Chapter 4 when phrases may ground to objects that are not per-

ceived. Resolving the ambiguity of synonyms and unseen objects must be left for
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future work. For the remainder of this section, however, one may see how synonyms

may be included within the DCG-UPUP system.

Synonyms easily fit into the grounding framework already presented. When

grounding a synonym, the object type is already known, but the phrase is different.

If the robot may assume that phrases only refer to objects it can currently perceive,

one must only consider two possible cases: 1) the robot perceives one or more un-

known object or 2) the robot does not perceive any unknown objects. In the first

case, DCG-UPUP favors grounding unknown phrases to unknown objects, so it will

try to choose the best candidate unknown object. In the second case, DCG-UPUP

must ground an unknown phrase to a known object, so, similarly, must choose the

best candidate known object. Heuristics used for breaking such ties (among either

known or unknown objects) are presented in Chapter 5.

The behavior in the second case is exactly what is necessary for learning syn-

onyms. An unknown noun (e.g. “ball”) is associated with a known object (e.g. a

sphere). By using the same unsupervised learning trick of retraining on grounding

outputs, the new phrase may be permanently learned.

Unfortunately, as stated previously, the critical issue that merits further investiga-

tion is deciding whether an unknown phrase refers to an unknown object (perceived or

unperceived) or a known object. Incorporating additional spatial clues from language

(e.g. “pick up the ball in the front”) or gestures (e.g. pointing to the sphere) could help

solve this problem through disambiguation. Subsequently modifying DCG-UPUP to

learn synonyms, following the procedure described above, would be straightforward.
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Chapter 4

Grounding out of Perception

Regardless of how well the robot may ground to objects it perceives, performance of

DCG-UPUP is limited unless the robot can ground to objects that it cannot perceive.

For example, if a robot is told “go to the cube behind the wall,” if the robot can see a

wall but cannot see behind it, the robot should deduce approximately where the cube

probably is. In an even simpler scenario, imagine that a robot that has been trained

to ground cubes and spheres is facing only cubes and is told “go to the sphere.” Once

again, the robot should be able to deduce that in such a scenario, it must explore

outside its current field of view rather than finding the most sphere-like cube. A new

version of DCG-UPUP, called DCG-UPUP-Away (for Distributed Correspondence

Graph - Unknown Phrase Unknown Percept - Away) is presented that explicitly al-

lows a robot to ground to objects outside its current field of view.

The majority of this chapter will discuss various approaches initially developed to

adapt DCG-UPUP for out-of-world groundings. Two model changes, although poten-

tially promising for future research, are considered but ultimately discarded for a more

elegant and robust approach that involves “hypothesizing” objects outside the field

of view. Finally, this chapter concludes by explaining how natural language feedback

from the robot to the human could be integrated for more robust performance.
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4.1 Alternate Approaches to Grounding Out-of-World

4.1.1 Default Out-Of-World Groundings

One possible approach for deciding when to ground to out-of-world objects is based

on a sort of default behavior: if the confidence of the best grounding falls below a

certain threshold, the robot should explore the world it cannot perceive. This sim-

ple method has the advantage of not changing the DCG-UPUP model and therefore

scarcely affecting runtime. Furthermore, it appears to reflect how people may decide

to look for objects; if one is told to find a cube yet sees nothing that looks like a cube,

say, one might walk around until finding a good match.

Although such behavior may seem to reflect how humans think, in fact, upon

further consideration, this appearance disintegrates. Default behavior and human

behavior diverge when phrases either match several objects very well, or no objects

at all. Consider, for example, telling a robot to “pick up the cube” when it is facing

20 cubes. If every cube is equally likely to be the correctly grounded object, then

the probability of the most likely grounding will be around 5%. If the threshold for

an out-of-world grounding is greater than 5%, therefore, the robot will erroneously

decide to look for a cube other than the 20 it currently sees. Clearly, a similarly

difficult environment may be constructed for any threshold, leading to failure.

In addition, this approach is unattractive simply because it is not a learned be-

havior. Ideally, DCG-UPUP-Away would inherently decide where to ground to not

through a set of pre-defined rules, but rather through seeing several training examples

and generating its own rules. Having a default threshold violates this principle.

4.1.2 Symbolic Representation of Out-Of-World Groundings

Another possible approach is to have a symbol, out_of_world that represents all pos-

sible out-of-world groundings. Therefore, if DCG-UPUP-Away grounds to out_of_world,
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the robot decides to explore a new part of the environment.

This appears to be a satisfactory solution that matches the thresholding idea in

the previous section, but with the theoretical advantage of being a learned behavior.

In order to teach DCG-UPUP-Away when to ground out of the world, training ex-

amples are constructed in which nouns that do not match perceived groundings are

grounded to the out_of_world symbol.

There remain, however, two problems with this approach. First, using a single

symbol to represent all possible object types outside the current field of view seems

like an inaccurate representation of how people decide whether or not a phrase refers

to something they cannot see. Secondly, after actually implementing this approach,

performance remains frustratingly poor. It appears as if the underlying problem

is that, when the LLM is trained to ground many different phrases to the same

out_of_world symbol, distinctions among the different phrases fade. Thus, phrases

such as “cube” and “sphere” start grounding to the same groundings, even if a cube

or sphere is perceived. Clearly, such behavior is unacceptable.

4.2 “Hypothesized” Objects Approach

The solution used for the final version of DCG-UPUP-Away addresses the problems

in the previous two approaches. The main idea is to create a hypothesized object for

each possible object type (all the known types as well as the unknown type, intro-

duced in DCG-UPUP). Note that this means each perceived object has a hypothesized

counterpart of the same type. If DCG-UPUP-Away grounds to a hypothesized object

rather than an actual object that the robot perceives, the robot decides to explore

new areas. This approach matches the two design criteria proposed: first, it is a

learned behavior and, second, it matches human intuition by comparing how well a

phrase grounds to hypothesized objects and perceived objects.
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In order to implement these changes, DCG-UPUP is altered before any infer-

ence is actually conducted. First, DCG-UPUP-Away populates a world model Υ

based on what objects are currently perceived. This is exactly what happens in DCG

and DCG-UPUP. Second, DCG-UPUP-Away iterates through each possible object

type (maintained as a growing set, as explained in Chapter 3) and adds a single hy-

pothesized instance of each object to the world model. For the sake of computational

speed and simplicity, only a single hypothesized instance of each object type is added,

but doing so assumes that natural language commands will not refer to several out-

of-world objects. This assumption can be relaxed by creating several hypothesized

objects of the same type, but is outside the scope of this research.

After adding the hypothesized objects to the world model, inference proceeds

as in DCG-UPUP, but with the new world model. If the grounded object is a hy-

pothesized object, the robot must explore its surroundings; otherwise it can see the

grounded object. Currently, “exploring” surroundings consists of slowly rotating in

place, thus revealing more of the surrounding environment. As DCG-UPUP-Away

perceives additional objects, it attempts to ground the command within the updated

world model. Future work could easily yield more sophisticated behavior by adding

exploratory heuristics or even using language to guide search (as in [19] and [3]).

Intuitively, this approach finally matches how people decide whether or not a

phrase refers to something they cannot currently see. Upon hearing a phrase, it is

natural to compare how well that phrase matches each object currently seen (ground-

ing within the world) or each object not seen (grounding outside the world). For

example, when facing a cube and hearing the phrase “go to the cube,” the phrase

“cube” matches the cube better than, say, an imaginary sphere outside the field of

view. Conversely, when facing a cube and hearing the phrase “go to the sphere,” the

phrase “sphere” does not match the cube but would match a sphere very well if it

existed outside the field of view, so the natural decision is to look elsewhere for the

sphere.
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There is, however, one subtlety worth considering: a phrase may refer to an object

that is currently outside the field of view, but within the field of view there may be an

object of that same type. Imagine, for example, a robot located between two cubes,

only looking at one. When told “go to the cube,” what should the robot do? On

the one hand, the cube in front of it is a high probability grounding for the phrase

“cube.” At the same time, a hypothetical cube would match “cube” with equally high

probability!

One way to resolve this subtlety is to introduce an additional feature and training

examples into DCG-UPUP-Away. The feature – fhypobj – fires when the grounded

object is hypothesized, but does not fire if the object is perceived. Only 6 positive

training examples demonstrating tie-breaking between real and hypothesized objects

(e.g. “go to the cube” grounds to a perceived cube rather than a hypothesized cube)

are necessary to train DCG-UPUP-Away to favor real objects.

4.2.1 Modifications to the DCG Model

Just as when comparing DCG-UPUP to DCG, one may compare DCG-UPUP-Away

to DCG by examining the domains of variables used in solving the grounding problem.

Once again, the underlying equation used for finding the optimal grounding remains

the same.

Table 4.1: Identical equations are used for DCG, DCG-UPUP, and DCG-UPUP-Away

DCG φ∗ = arg max
φijεΦ|λ|

n∏
i=1

p(φij|γij, λij,Γcij ,Υ)

DCG-UPUP φ∗ = arg max
φijεΦ|λ|

n∏
i=1

p(φij|γij, λij,Γcij ,Υ)

DCG-UPUP-Away φ∗ = arg max
φijεΦ|λ|

n∏
i=1

p(φij|γij, λij,Γcij ,Υ)
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This time, the domains of Γ and Υ have grown larger to reflect the set of possible

hypothesized objects. The resulting graphical model for DCG-UPUP-Away is shown

in plate notation in Figure 4-1, with the domains of the variables in Table 4.2. In

this complete model, nouns may ground to known and perceived objects, unknown

and perceived objects, known and hypothetical objects, or unknown and hypothetical

objects.

Table 4.2: Variable and domain definitions for DCG-UPUP-Away. Unknown phrases
(ΛU) and unknown groundings (ΓUO) remain, and hypothetical objects are added to
the world model (ΥH).

Γ = ΓKA ∪ ΓKO ∪ ΓUO
Λ = ΛK ∪ ΛU

Υ = ΥP ∪ΥH

Φ = {True, False}

Finally, one may revisit the LLM used for associating phrases with objects. Whereas

DCG-UPUP introduces two additional features (one for detecting unknown phrases

and one for detecting unknown objects), the only feature added for DCG-UPUP-Away

is fhypobj. Thus, the computation of Ψ may be rewritten as in Equation 4.2. The

LLM now clearly uses the original features from DCG, the two features for associating

unknown phrases with unknown objects, and the feature for detecting hypothesized

objects.

φ∗ = arg max
φεΦ|λ|

1

Z

∏
i

Ψ(φij, γij,Γcij ,Υ) (4.1)

Ψ = exp
( ∑
fεFDCG

[
µff(φij, γij, λi,Γcij ,Υ)

]
+

∑
f ′εFUnknown

[
µf ′f

′(φij, γij, λi,Γcij ,Υ)
]
+

∑
f ′′εFHypothesized

[
µf ′′f

′′(φij, γij, λi,Γcij ,Υ)
])

(4.2)

60



4.3 Potential Improvement through Natural Language

Feedback

As mentioned at the end of Chapter 3, DCG-UPUP originally allowed for learning

synonyms, but only under the assumption that phrases refer exclusively to objects

that are currently perceived. That assumption is relaxed in DCG-UPUP-Away, and a

new problem arises: how can one distinguish between a synonym for a known object

that is present in the world and a new phrase referring to a new object that is out of

the field of view of the robot. In fact, without outside information, it is impossible

to distinguish between the two cases.

One possible way to resolve this problem is through natural language feedback

from human users. For example, instead of finding the single most likely grounding,

DCG-UPUP-Away could propose two groundings: the most likely grounding to a

perceived object, and the most likely grounding to a hypothetical object. The human

could then specify which of the two groundings to choose.
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Figure 4-1: The graphical model for DCG-UPUP-Away. The four types of objects —
known perceived, unknown perceived, known hypothetical, and unknown hypothetical
— are labeled as ΓKP , ΓUP , ΓKH , and ΓUH , respectively.
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Chapter 5

Resolving Object Ambiguity through

Heuristics

In this chapter, grounding accuracy is improved by reasoning with object properties

and natural language adjectives. DCG-UPUP-Away, as developed so far, solves the

problems initially described in the introduction: a robot may now reason about un-

known objects and phrases, autonomously learn new symbols, and even reason about

objects that it cannot perceive. However, DCG-UPUP-Away occasionally grounds to

the wrong object when multiple objects of the same type are present. For example,

if two cubes are perceived simultaneously when given the command “go to the cube,”

the model assigns equal likelihoods to grounding to either of the cubes and may there-

fore mistakenly choose the wrong cube to approach. Perhaps more importantly, if

DCG-UPUP-Away perceives two unknown objects (e.g. a mailbox and a cone) and

is told to “go to the cone” when the phrase “cone” is unknown, it is just as likely to

ground to the mailbox as the cone. Due to the unsupervised learning techniques used

for symbol acquisition, this has potentially long-term effects. Therefore, in order to

increase robustness for experimental validation and to indicate a broad area for future

work, DCG-UPUP-Away has been modified to use context referents in language and

object property information from the real world to determine the correct grounding.

Specifically, DCG-UPUP-Away uses color adjectives to disambiguate between objects

with different colors.
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5.1 Form of Color Heuristic

The role of the color heuristic is to differentiate between two objects of the same

type: for example, a red cube and a blue cube. More generally, any heuristic relat-

ing an object’s properties to language (e.g. “small” and and object’s size) assists in

disambiguating among objects. For a deployable robot in the real world, many such

heuristics may be necessary, as natural language routinely references object proper-

ties, not just their type.

Nearly all heuristics considered for DCG-UPUP-Away match the form of the color

heuristic: an association is learned between natural language (e.g. “red”) and an ob-

ject property (e.g. its RGB value). Any heuristic that ignores natural language but

favors certain groundings over others makes that assumption that those objects are

generally more likely to be grounded to. An example of this is the hypothesized

heuristic, introduced in Chapter 4. In general, when deciding between grounding to

two identical objects, one of which is perceived and the other of which is hypothe-

sized, it is more likely that the language grounds to the perceived object. Therefore,

the hypothesized heuristic only requires one feature that determines whether or not

an object is hypothesized. More generally, though, heuristic features that rely on

both language and object properties require at least two features: one to detect the

language part, and one the object property part. By including these two features it

is possible to learn their association.

5.2 Color Heuristic Features

The remainder of this chapter will explain how the color heuristic is included within

DCG-UPUP-Away. Only 3 main changes are necessary: 1) a fword feature must be
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added for each adjective that contains color information (e.g. “red”), 2) a new feature,

fcolor, must be developed to fire if an object’s color matches the feature’s argument

(e.g. red), and 3) a fcolor feature must be added for each color that an object can

take on (in this case restricted to a set of common colors) passed in as an argument,

color_arg. The mathematical formulation of fcolor is shown in Equation 5.1:

fuphrase(φij, γij, λi,Γcij ,Υ) =

1, if γij.color == color_arg

0, else
. (5.1)

5.2.1 Color Language Feature

On the language detection side, minimal changes are required. The feature for de-

tecting when a particular word is used in a phrase, fword, has already been developed

in DCG. Therefore, all that is required is to add features to detect what color phrases

appear. In this particular development, that meant adding fword with the arguments

“red”, “green”, and “blue”.

There is one further change necessary for a sentence containing color adjectives

to be parseable in the first place: the parser must be updated to allow for adjectives.

Recall that parse trees are necessary in order to infer the structure of the graphical

models in G3, DCG, and DCG-UPUP-Away. It is possible to add an adjective or even

multiple adjectives in front of nouns, however, by introducing a recursive parse tree

element with a base case of an adjective followed by a noun. This small modification

is all that is necessary to parse phrases with potentially infinite adjectives.

5.2.2 Color Object Feature

Just as language features are added to detect phrases like “red,” object property fea-

tures must be added to detect what colors objects are. Adding such features requires

65



two changes: 1) objects must contain a color property and 2) a feature must be cre-

ated that accepts a color as an argument and fires if a grounded object matches the

color.

Updating objects to keep track of color is relatively simple. There are myriad

ways to represent color (e.g. RGB or HSV), but for simplicity, in this instance, de-

velopment was limited to representing color as an object property that could take on

four possible values: “red,” “green,” “blue,” and “na.” Updating the world model Υ to

reflect objects’ colors is similarly straightforward. The object recognizer introduced in

Chapter 3 is modified to also detect the most prevalent RGB value within the bound-

ing box of each object by thresholding the color histogram of the overall image. If no

color channel value is noticeably greater than the others, the object color is set to “na”.

Given that the world model maintains information about each object’s color, one

may develop a feature that fires when the grounded object matches a specific color.

The feature, called fcolor, is almost exactly like an existing feature, fobjtype, which

checks what type of object the grounded object is. Instead of checking the object-

type property, however, fcolor checks the color property. Therefore, three fcolor’s were

added to the feature set with arguments “red,” “green,” and “blue.” By including

several training examples in which phrases like “go to the red cube” grounds to a red

cube instead of a blue cube, DCG-UPUP-Away can learn the association between

color adjectives and color properties.

Although fcolor as described so far has been developed to accomplish most of the

desired goals of disambiguating between objects of the same type, one key problem

remains: given that DCG-UPUP-Away hypothesizes objects in order to ground to

objects it cannot perceive, and given that color now influences groundings, it appears

as if it is necessary to hypothesize every object in every color. Such a procedure could

be computationally prohibitively expensive, since it involves searching over the cross

of the object type space and the color space. Instead, only a minor modification is
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made to fcolor. Previously, fcolor returned true if and only if the grounded object’s

color matches the feature’s argument (e.g. fcolor(“blue”) firing only if the grounded

object is blue). Now, fcolor returns true if the grounded object’s color matches the

feature’s argument or if the object’s color is “na.” As a result, if hypothetical objects

are created with colors set to “na,” every feature color will fire – as if the object has

the correct color to match the language, whatever that color may be. In practice,

this approach works quite well and efficiently solves the problem of simultaneously

solving for color and object type.

Having presented the main ideas behind incorporating the color heuristic, one may

formally see how the inference procedure in DCG-UPUP-Away is changed. The prob-

abilistic graphical model itself remains unchanged because the domains of groundings

stays the same (objects merely contain color information as well). 7 additional fea-

tures have been introduced, though: 3 for detecting the words “red,” “blue,” and

“green”, 3 for detecting object colors red, blue, and green, and 1 for detecting the

object color “na.” This appears in the LLM equations as shown in Equation 5.3.

φ∗ = arg max
φεΦ|λ|

1

Z

∏
i

Ψ(φij, γij,Γcij ,Υ) (5.2)

Ψ = exp
( ∑
fεFDCG

[
µff(φij, γij, λi,Γcij ,Υ)

]
+

∑
f ′εFUnknown

[
µf ′f

′(φij, γij, λi,Γcij ,Υ)
]
+

∑
f ′′εFHypothesized

[
µf ′′f

′′(φij, γij, λi,Γcij ,Υ)
]
+

∑
f ′′′εFColors

[
µf ′′′f

′′′(φij, γij, λi,Γcij ,Υ)
])

(5.3)

Another possible way to solve this problem would be to first solve for color (in-

dependent of object type) and then solve for object type. This would simultaneously
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solve the computational problem of searching jointly over color and object type while

matching human intuition. In many ways, solving for color and solving for object

type seem like independent problems, which bolsters the argument for this alternate

approach. Such an approach would involve introducing an additional type of symbol

representing color and is therefore left as a promising area for future research.
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Chapter 6

Evaluation

In this chapter, a framework for evaluating DCG-UPUP-Away and the results found

from the proposed experiments are presented. This section will demonstrate that the

DCG-UPUP-Away model behaves as expected randomly generated simulation trials

as well as a proof-of-concept trial run on hardware.

The main metric of success is whether or not DCG-UPUP-Away grounds to the

correct object in a scene. One additional datum worth considering, however, is how

many symbols DCG-UPUP-Away correctly knows at any given time (e.g. it was ini-

tially trained to ground cubes, spheres, and cylinders, but now it also knows how

to ground cones). Both metrics will be considered, although the primary focus is

grounding accuracy.

6.1 Experimental Design

Although the examples in the previous section demonstrate some of the new capabil-

ities developed in DCG-UPUP-Away, two questions remain unanswered: 1) do these

capabilities apply to real-world scenarios and 2) how does DCG-UPUP-Away perform

in such scenarios? To answer these questions, an experiment was designed specifi-

cally to test DCG-UPUP-Away using language generated by the human subjects in
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randomly generated environments.

The overarching idea of the evaluation procedure falls into 4 phases:

1. Randomized environment generation

2. Natural language command generation

3. DCG-UPUP-Away training

4. DCG-UPUP-Away evaluation

6.1.1 Simulated Environment Generation

In the first phase, 10 random environments are generated by selecting a subset of

objects from a library of 24 possible objects. These 24 objects are generated by com-

bining one of 8 object types (cube, sphere, cylinder, cone, hydrant, handle, mailbox,

or drill) with one of 3 possible colors (red, green, or blue). Each object is selected to

be added to the environment with a 15% probability. Each added object is placed at

a random location generated from a uniform distribution over a 4 by 4 meter square

around the robot (excluding a 2 by 2 meter square directly around the robot). Note

that the global orientations of objects are not randomized - given that the robot will

be placed in the middle of the scene and that objects are randomly located, though,

the orientation of an object relative to the robot will therefore automatically be ran-

domized. Finally, environments are rejected if they contained zero or one objects or

if an object is completely hidden behind another object when viewed from the start-

ing position of the robot. Figure 6-1 shows samples from the dataset of simulated

environments.

Generating environments in such a manner maintains two important facts about

the environments. First, the robot cannot know ahead of time what objects are

present in the world. Second, objects may be placed out of the initial field of view

of the robot. These two facts, coupled with the fact the robot will only be trained
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(a) A generated random environment contain-
ing a blue sphere and a red mailbox.

(b) A different generated random environ-
ment containing a green hydrant, blue hy-
drant, green mailbox, red hydrant, green cone,
and blue cylinder.

Figure 6-1: Sample generated test environments

with cubes, spheres, and cylinders, means that both the unknown-phrase, unknown-

percept and out-of-world grounding capabilities will be tested.

6.1.2 Natural Language Command Generation

After generating the environments, each object within each environment is paired to

a natural language command. Such commands may then be used to tell the robot

how to approach any given object in any environment, and the response of the robot

can later be assessed for accuracy.

Given the 10 particular generated environments, there are 39 objects total. Screen-

shots of each environment are taken and then modified to highlight one particular

object. Figure 6-2 shows two sample images of the same environment with different

objects highlighted.

These images with highlighted objects are then uploaded to a form on Amazon

Mechanical Turk for natural language annotation. Online users are shown one such

image and asked to “Please write the command for approaching the highlighted ob-

ject.” Users are also provided with a sample image of a green cylinder, red cube, and
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(a) Highlighting a blue sphere in a sample en-
vironment.

(b) Highlighting a red mailbox in a sample
environment.

Figure 6-2: Example environments with highlighted objects.

blue sphere in which the cylinder is highlighted. The sample image is accompanied

by the command “go to the green cylinder.”

In total, 390 annotations are collected: 10 for each of the 39 images. Allowing 10

annotations for each image mitigates the problem of improperly formed annotations.

For example, one user routinely used spatial relations in annotations (e.g. saying “go

to the object on the left”) despite the instructions explicitly prohibiting such phrases.

In addition, because the true goal of collecting the natural language commands is

to generate a series of consistently labeled images, ideally one user should label all

39 images. In fact, several users stopped labeling after only a handful of images,

rendering their annotations useless. Ultimately, however, several users followed nearly

all the instructions (although occasionally alternated between labeling spheres as

“sphere” and “circle”) and labeled each of the 39 images. The commands of the first

such user were used for the rest of the experiment. Thus, although only a small

fraction of the annotations were used, Amazon Mechanical Turk served its purpose

by generating commands from non domain experts.

6.1.3 DCG-UPUP-Away Initial Training

Often, experiments designed to assess natural language understanding use a randomly

selected subset of their test data as a training set [54, 29]; in this experiment, however,
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a pre-defined corpus of 55 example phrase groundings are used. If this experiment

used a subset of the test data, the likelihood of assessing performance when grounding

to unknowns would be extremely small, because few objects or phrases would remain

unknown.

The only way to guarantee that some phrases and percepts will remain unknown

is by leaving them out of the training set. Therefore, an initial grounding data set

is constructed that only grounds cubes, spheres, and cylinders (other nouns, such as

“mallet” and “pipe” are also used, but only to train grounding to unknowns). The

majority of the groundings are used for training how to ground “cube,” “sphere,” and

“cylinder” as well as how to use color to disambiguate between objects. In addition,

8 of the examples are used to introduce synonyms to the known types (e.g. “circle”

grounds to a sphere type and “box” grounds to a cube type). These synonym train-

ing examples introduce a degree of vocabulary robustness that was ultimately used

to ground real users’ phrases. Finally, similar to the initial set of grounding training

data, a set of images of cubes, spheres, and cylinders is set aside as the initial training

for the object recognizer.

After training DCG-UPUP-Away with the initial training data, the system has

learned the symbols for cubes, spheres, and cylinders. Subsequent trials could use

any of 8 possible objects, meaning the system at first knows only 3
8
of symbols in the

testing environments.

6.1.4 DCG-UPUP-Away Evaluation

The simulated environments, natural language commands, and initial training data

are all that is necessary for evaluating DCG-UPUP-Away. Two evaluation mecha-

nisms are developed: one full end-to-end system with an automatic object recognizer,

and one system in which object recognition is decoupled from the main system and

performed manually (researchers hand-label each object as its object type or unknown

when it is perceived). Although the former experiment evaluates DCG-UPUP-Away
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in a more realistic setting, the inaccuracy of the object recognizer introduces errors

that mask whether or not DCG-UPUP-Away, the model, functions properly. More-

over, the object recognition module is fully separable from the language grounding

module, so future object recognition work may be easily incorporated into the overall

system.

Both methods (named “automatic” and “manual” for the automatic object recog-

nition and manual object recognition systems, respectively) are used to determine

their grounding accuracy rates over a series of natural language commands. The rate

indicates how likely is it that DCG-UPUP-Away will ground to the right object for

many commands even as it performs unsupervised learning between commands.

The exact evaluation procedures for both methods are nearly identical. First,

for both methods, DCG-UPUP-Away was trained on the initial training set. The

automatic method additionally trained an object recognizer based on a set of ini-

tial training images. Second, a series of environment and natural-language command

pairs was uniformly randomly selected without replacement from the 39 possible com-

mands. Each series is called one “trial”; thus a trial consists of several evaluations

within different environments. Within a trial, a single evaluation is referred to as

an “iteration.” For the automatic method, which is considerably slower than the

manual method, each trial contained 5 environments, so 5 iterations; for the manual

method, each series contained 10 iterations. Third, a turtlebot was placed in each of

the simulated environments, in order, and given the corresponding natural language

command. Figure 6-3 shows a screenshot of the turtlebot placed in one such environ-

ment.

Between iterations in a given trial, DCG-UPUP-Away is retrained using the last

generated unsupervised training example. For the automatic method, success for a

given iteration is determined by whether or not the last camera view of the robot

contains exactly one object and it is the correct robot. For the manual method, suc-
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Figure 6-3: The turtlebot located in a simulated environment used for evaluation
of DCG-UPUP-Away. Note how, given its orientation and position, the turtlebot
perceives the blue sphere but has no way of knowing of the red mailbox.

cess is determined by manually reading through the grounding output file. Alongside

recording an iteration’s success rate, how many symbols DCG-UPUP-Away has cor-

rectly learned is also logged. After finishing a full trial of iterations, all unsupervised

training examples are erased, and the entire evaluation process starts over with initial

training.

6.2 Experiment Results and Analysis

The results have been divided into 4 groups. In the first, the grounding accuracy

rate using manual object recognition is calculated as a function of iteration number

within a given series. In the second, the number of correctly known symbols (rang-

ing from 3 to 8), is plotted as a function of iteration number as well. In the third,

the symbol and accuracy data are combined to show how accuracy rates increase as

a function of symbols learned. Finally, in the fourth, preliminary data is presented

for accuracy rate using automatic object recognition as a function of iteration number.
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6.2.1 Grounding Accuracy across a Series

The primary result shown in this experiment is that the accuracy of DCG-UPUP-

Away remains relatively constant at 80% over series of 10 iterations. The exact data

showing this result are shown in Figure 6-4. The data used for this plot were generated

using manual object recognition, for 30 trials, each with 10 iterations.
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Figure 6-4: Relatively constant ground accuracy rate of DCG-UPUP-Away as a func-
tion of iteration number.

There are two main results shown in this plot. First, the baseline accuracy ranges

between 70% and 90%. Averaged across all iterations and all trials (for a total of 300

individual evaluations), 80% of commands result in a successful grounding. Hidden

within that 80% are a majority of iterations in which the object being referred to

is unknown (not a cube, sphere, or cylinder), out of the field of view of the robot,

or both. This feeds nicely into the second main point: grounding accuracy remains

high across all iteration numbers. In other words, despite only using completely

unsupervised learning within a trial, DCG-UPUP-Away is as likely to succeed after 9
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iterations as after only training on hand-curated initial training data. Furthermore,

during the course of retraining on unsupervised data, DCG-UPUP-Away learns new

symbols.

6.2.2 Symbol Learning across a Series

The next metric worth examining is exactly how many symbols DCG-UPUP-Away

learns over the course of 10 iterations. After all, if DCG-UPUP-Away is initially

trained on cubes, spheres, and cylinders but only knows those three symbols at the

end of a trial, maintaining the high grounding accuracy across iterations is not im-

pressive. In fact, that is not the case. Figure 6-5 shows how, on average, the number

of correctly learned symbols grows from 3 (cube, sphere, cylinder) in the first iteration

to over 6 by the last iteration (the iteration number goes to 11 to allow for retraining

after the 10th iteration).
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Figure 6-5: Increasing number of correctly learned symbols as a function of iteration
number. DCG-UPUP-Away is initially trained to know 3 symbols of the 8 symbols
used in generating environments.
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At the very least, the data in Figure 6-5 validate that DCG-UPUP-Away per-

forms as expected. The blue line, showing actual data, tracks the red line, showing

algebraically computed expected values, quite well. (The algebraically computed ex-

pected values are generated using simple combinatorics reflecting a maximum of 8

possible known symbols.) The data are admittedly heteroscedastic; variance in the

number of correctly learned symbols increases as a function of iteration number. In

fact, this trend of growing variance may be unavoidable. After all, each series starts

with exactly 3 known symbols and then randomly acquires new symbols, which in-

troduces additional variance.

The most important result from Figure 6-5, however, is that DCG-UPUP-Away

reliably learns a few symbols correctly. Despite only being initialized with knowledge

of cubes, spheres, and cylinders, DCG-UPUP-Away may be placed in scenes contain-

ing up to 5 other unknown symbols: fire hydrants, cones, door handles, mailboxes,

and power drills. On average, after 10 iterations, DCG-UPUP-Away has learned at

least 3 of these symbols, completely autonomously. In fact, in 10% of the trials,

DCG-UPUP-Away learned all 5 unknown symbols correctly by the last iteration.

Furthermore, if human feedback is ever incorporated into DCG-UPUP-Away, the

average number of correctly learned symbols will likely increase dramatically. The

most common failures, both in grounding accuracy and symbol learning, occurred

when DCG-UPUP-Away had to pick between two unknown objects of the same color,

grounded to the wrong one, and subsequently misclassified that object for all remain-

ing trials.

6.2.3 Improved Accuracy through Symbol Acquisition

Having determined that DCG-UPUP-Away learns symbols, the natural next question

is whether doing so improves grounding accuracy. In other words, does knowing more

symbols make DCG-UPUP-Away more likely to correctly ground a natural language

command. Therefore, rather than plotting accuracy as a function of iteration number
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within a trial, Figure 6-6 shows that knowing more symbols is positively correlated

with improved accuracy (r = 0.654).
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Figure 6-6: DCG-UPUP-Away grounding accuracy as a function of number of known
symbols

It should be emphasized that Figure 6-6 plots grounding accuracy as a function

of total number of symbols learned, even if such symbols are learned incorrectly. For

example, if DCG-UPUP-Away grounds the phrase “hydrant” to a cone because both

hydrants and cones are unknown (and the robot sees the hydrant before it sees the

cone), DCG-UPUP-Away will think that it has learned a symbol for hydrant. If one

plots grounding accuracy as a function of correctly learned symbols, however, one

generates Figure 6-7.

In this figure, the correlation between learning symbols correctly and grounding

more accurately is even tighter (r = 0.857). This substantial improvement in accu-

racy motivates still further future research in human feedback - if humans could tell

a robot that the robot learned a symbol incorrectly, the gap in performance between

Figure 6-6 and Figure 6-7 would shrink.
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Figure 6-7: Grounding accuracy as a function of number of correctly known symbols

Even without human feedback, Figure 6-7 gives an additional insight into how

DCG-UPUP-Away may be improved without modification of the actual model. Re-

call that the main source of grounding error is the result of ambiguous environments

in which there are several unknown objects of the same color. If DCG-UPUP-Away

makes a grounding error in such an environment and subsequently learns a sym-

bol incorrectly, the number of correctly known symbols will remain persistently low.

Therefore, DCG-UPUP-Away cannot benefit from the increased grounding accuracy

from the right hand side of Figure 6-7. Instead, if one is careful in initially expos-

ing DCG-UPUP-Away to unambiguous environments at first, DCG-UPUP-Away will

rapidly learn symbols correctly. As a result, grounding accuracy will likely similarly

improve since grounding accuracy is greater when more symbols are correctly learned.

In fact, this strategy of unsupervised learning using simple examples first and then

increasingly complex examples has appeared in both human cognition and symbolic

artificial intelligence research [53].
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6.2.4 Accuracy Using Automatic Object Recognition

One remaining question that must be addressed is how well the previous results apply

in a fully autonomous system. All the data already presented were generated using

manual object recognition; humans viewed the camera output of a simulated turtle-

bot and listed the color and type of each visible object. In fact, incorporating an

object recognizer, slightly, but nevertheless noticeably, worsens grounding accuracy.

Figure 6-8 shows grounding accuracy, over 10 trials, each with 5 iterations, for runs

in simulation using an object recognizer.
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Figure 6-8: Grounding accuracy as a function of iteration number using automatic
object recognition

The blue line, representing grounding accuracy for the automatic object recog-

nizer, routinely falls below the red line, which was generated using manual object

recognition for the same scenes. This graph clearly demonstrates that imperfect ob-

ject recognition worsens DCG-UPUP-Away’s performance. Fortunately, as previously

stated, the object recognition module of DCG-UPUP-Away is completely separable,
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so a better object recognizer could easily be integrated into the overall system.

6.2.5 Hardware Demonstration

One final way to demonstrate the improvements offered by DCG-UPUP-Away is on a

physical platform: a real turtlebot driving around a laboratory, as shown in Figure 6-9.

Given the high fidelity of turtlebot simulations in Gazebo, porting DCG-UPUP-Away

code from a simulation environment to a real turtlebot environment is trivial. The

only real modification necessary is retraining the object recognizer to recognize real

world objects instead of simulated blocks. A proof-of-concept run was divided into

3 iteration, each demonstrating a unique capability. In the run, in order to simplify

the job of the object recognizer, the known object types were boxes, helmets, and

soap bottles. Both the image recognizer and natural language training examples were

modified for the new types.

Figure 6-9: The turtlebot used to evaluated DCG-UPUP-Away in the real world.
Only the top-mounted kinect was used to gather rgb images of the environment.
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Hardware DCG

First, the robot demonstrates that the original DCG capabilities remain intact. The

robot is placed in a scene with a box, a helmet, a bottle of soap, and a cone (the cone

is unknown). After receiving the command “move towards the box,” the turtlebot

successfully drives to the box, as shown in Figure 6-10. This behavior demonstrates

the capability to ground known phrases to known types.

Figure 6-10: When given the command “move towards the box,” the turtlebot ap-
proaches the box by grounding a known phrase to a known object.

Hardware DCG-UPUP

Second, the robot demonstrates the ability to associate unknown phrases with un-

known percepts. The robot is placed in a scene with a box, a helmet, and a cone

(the cone is still unknown). The turtlebot is given the command “move towards the

cone.” Because the cone is perceived as an unknown object and the phrase “the cone”

is unknown, “cone” is grounded to the cone, and the robot drives to the cone, as

in Figure 6-11. This demonstrates that DCG-UPUP has learned how to ground to

unknowns.
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Figure 6-11: When given the command “move towards the cone,” the turtlebot drives
to the cone because “cone” is an unknown phrase and the physical cone is observed
as unknown.

Hardware DCG-UPUP Learning

Third, the robot shows that it can permanently learn new symbols. By retraining

after the second command (in which it grounded “cone” to a cone), the robot learns

the symbol for a cone. In fact, when placed in a scene with a ball (which is unknown)

and a cone (which is now known), the robot drives to the ball when it hears an

unknown phrase such as “move to the ball.” Conversely, in the same scene, if the

robot gets the command “go to the cone,” the robot drives to the cone. The divergent

behaviors resulting from the different commands are both shown in Figure 6-12. The

fact that the turtlebot behaves differently when grounding “cone” and “ball” shows

that the robot must have learned what a cone is.
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Figure 6-12: When given the command “move towards the cone,” the turtlebot follows
path 1. When given the command “move towards the ball,” the turtlebot follows path
2. In order to distinguish between cones and balls, the turtlebot must have learned
what a cone is.
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Chapter 7

Conclusion

7.1 Contributions

There are two main contributions from the work presented in this thesis: 1) propos-

ing a model, DCG-UPUP-Away for automatic symbol acquisition by grounding to

unknowns, and 2) experimental validation of the model. The key idea behind the

expanded model is that explicitly recognizing phrases or percepts as unknown allows

for more intelligent behavior and unsupervised learning. In fact, the concept of rec-

ognizing unknowns could easily apply to many domains within robotics to increase

robustness and learning capabilities in unknown environments.

Although such domains are left for future research, within the field of natural

language grounding, DCG-UPUP-Away two novel capabilities. First, in randomly

generated environments in which more than half of all objects are unknown to DCG-

UPUP-Away ahead of time, DCG-UPUP-Away grounds to the correct object around

80% of the time. Second, by using naïve unsupervised learning between trials, DCG-

UPUP-Away autonomously learns new symbols. This second point, in particular,

appears important. One could imagine mass producing robots, training them with

initial data that will be useful nearly everywhere, and then shipping off the robots

to remarkably different environments. For example, one robot could go to an oil

rig, while another robot, initially identical to the first, could work as a shop assis-
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tant in a tobacco store. Over time, however, the two robots will learn completely

different meanings of the words “pipe” (one for pumping oil, the other for smoking

out of) precisely because the phrases take on different meanings in the two contexts.

This automatic divergence of knowledge because of separate experiences seems like

precisely what will be necessary in robots of the future.

7.2 Recommendations for Future Work

There remains, of course, much work to be done before such robots arrive on every-

one’s doorstep. Some changes require minimal modifications to the model in order

to incorporate more information into the grounding problem; other changes involve

fundamentally restructuring the DCG-UPUP-Away framework.

First, the performance of DCG-UPUP-Away could be greatly improved by in-

cluding additional sources of information. For example, online thesauruses or image

catalogs could eventually lead to super-human performances. With access to the on-

line Oxford English Dictionary, for example, DCG-UPUP-Away would never have to

face the scenario of truly not knowing what a word means. Similarly, accessing Google

Images could rapidly provide an object recognizer with enough training images to sub-

sequently recognize newly learned symbols. With such corpora, DCG-UPUP-Away

could search for synonyms to new phrase until it finds relates the unknown word to

a phrase it already knows how to ground. Alternatively, image search could be used

when grounding an unknown phrase to an unknown object: if the phrase “sofa” is

unknown and the turtlebot perceives a sofa and a cone (both of which are perceived

as unknown), Google Images could bias DCG-UPUP-Away to ground to the sofa by

searching for “sofa” online.

Second, DCG-UPUP-Away could be fundamentally altered for even more au-

tonomous symbol acquisition capabilities. For example, the domains of possible

groundings could be increased to involve several hypothesized unknown objects (which
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may be necessary when trying to ground phrases such as “go to the cone next to the

mailbox behind the wall.”) What could be most exciting, however, is the development

of half-symbols. Recall that symbols provide a layer of abstraction between phrases

and percepts. Currently, DCG-UPUP-Away only creates new symbols when ground-

ing an unknown phrase to an unknown object. Thus, an entire symbol gets created

atomically. Imagine, however, if DCG-UPUP-Away had the capability to manipulate

and observe unknown objects before ever grounding a phrase to that object. Pre-

sumably, it could still group all those percepts into a symbol that has not yet been

associated with a phrase. Similarly, DCG-UPUP-Away could scan pages of books

and develop an extensive vocabulary before grounding words to objects. If such a

system existed, it could run continually in a laboratory or even a household, only

seeking input from humans occasionally to match language half-symbols to percept

half-symbols. At that point, robotic behavior would start to match that of precocious

children. That is a bright future for robotics and mankind, and a future that we have

taken a preliminary step towards in this thesis.
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